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Abstract. This paper demonstrates that a generalized cyclic group
can be characterized in terms of the distributivity of its L-subgroup lattice
wherein the join structure of a pair of L-subgroups is formulated with the
help of the notion of tip extended pair of L-subgroups. Also using this join
structure, the modularity of the lattice of normal L-subgroups of a group
G is established. In the last section, we establish our main theorems by an
application of subdirect product theorems.
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1. Introduction

The relationship between the properties of subgroup lattices and the proper-
ties of corresponding underlying groups has drawn attention of many researchers in
the past. It is found that groups having isomorphic subgroup lattices have many
properties in common. For example, it is well known that, all groups whose sub-
group lattices are isomorphic with subgroup lattices of Abelian groups are necessar-
ily metaabelian. Moreover, certain groups such as cyclic groups of prime order and
generalized cyclic groups are characterized in terms of properties of their subgroup
lattices. Here we carry over such studies to the lattices of L-subgroups.

The construction of various types of lattices and sublattices of fuzzy subgroups
in a systematic and organized way was initiated by N. Ajmal and K. V. Thomas.
Modularity of the lattice of all fuzzy normal subgroups was established in a sys-
tematic and stepwise manner in the papers [3, 4, 5, 6]. The join structure of two
fuzzy algebraic substructures with identical tips plays a key role in the development
of most of the fuzzy algebraic substructures. The join structure of two fuzzy sub-
groups with identical tips in terms of their set product was formulated by N. Ajmal
[1]. However, when the tips differ even then the set product of the tip extended pair
µtη and ηtµ of fuzzy subgroups µ and η provides the join of µ and η as demonstrated
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by T. Head in his erratum [17]. A similar technique is used by I. Jahan [18] for con-
structing the join of two L-ideals of a ring. Moreover, N. Ajmal and K. V. Thomas
modified, simplified and utilized the construction of the generated fuzzy subalgebras
in groups, rings and lattices in a series of papers [3, 4, 5, 6, 7, 8, 9, 10, 11]. The
most economical construction of a generated fuzzy subgroup appeared so far, is due
to N. Sultana and N. Ajmal [21] and later by N. Ajmal and A. Jain [12]. These
results have been extended to L-setting by N. Ajmal and I. Jahan [13]. In this pa-
per, firstly, we formulate the join of a pair of L-subgroups by using the notion of
tip extended pair of L-subgroups, then we characterize generalized cyclic groups in
terms of the distributivity of its L-subgroup lattice. Also, we use the construction
of an L-subgroup generated by an L-subset by N. Ajmal and I. Jahan [13] to de-
velop the join of a pair of L-subgroups and the apply it to the characterization of
generalized cyclic groups in terms of distributivity of its L-subgroups lattice. As an
immediate corollary to our main theorem (Theorem 3.3), we obtain that a group is
generalized cyclic if and only if its lattice of fuzzy subgroups is distributive. This
result puts into shape the main result (Theorem 4.3) of the paper [23]. Moreover, we
establish that the lattice of normal L-subgroups of G is modular. In the last section,
it has been demonstrated that these two main theorems can be obtained as simple
corollaries to Tom Head’s subdirect product theorem [16] and a subdirect product
theorem established in [2].

2. Preliminaries

We recall here some basic concepts and results. For details, we refer to [14, 15,
16, 19, 20, 22, 24].

In our work, the system 〈L,≤,∨,∧〉 denotes a completely distributive lattice,
where ‘≤’ denotes the partial ordering of L, the join (sup) and the meet (inf) of
the elements of L are denoted by ‘∨’ and ‘∧’, respectively. Also, we write 1 and 0
for the maximal and the minimal elements of L, respectively. The definition of a
completely distributive lattice is well known in literature and can be found in any
standard text on the subject. We recall the following:

Let {Ji : i ∈ I} be any family of subsets of a complete lattice L and let F denotes
the set of choice functions for Ji, i.e. functions f : I →

∏
i∈I

Ji such that f(i) ∈ Ji for

each i. Then, we say that L is a completely distributive lattice, if∧
i∈I

{∨
Ji

}
=
∨
f∈F

{∧
i∈I

f(i)

}
.

The above law is known as the complete distributive law. Moreover, a lattice L is
said to be infinitely meet distributive, if for every subset {bβ : β ∈ B} of L, we have:

a ∧

∨
β∈B

bβ

 =
∨
β∈B

{a ∧ bβ} ,

provided L is join complete. The above law is known as the infinitely meet distribu-
tive law. The definition of infinitely join distributive lattice is dual to the above
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definition, i.e., a lattice L is said to be infinitely join distributive, if for every subset
{bβ : β ∈ B} of L, we have:

a ∨

∧
β∈B

bβ

 =
∧
β∈B

{a ∨ bβ} ,

provided L is meet complete. The above law is known as the infinitely join distribu-
tive law.

Clearly, both these laws follow from the definition of a completely distributive
lattice. Here we also mention that the dual of complete distributive law is valid in a
completely distributive lattice whereas the infinitely meet and join distributive laws
are independent from each other.

A complete lattice which satisfies infinitely meet distributive law is known as a
complete Heyting algebra or a frame.

Note that a completely distributive lattice is always a complete Heyting algebra.

An L-subset of a non empty set X is a function from X into L. The set of L-
subsets of X is called the L-power set of X and is denoted by LX . For µ ∈ LX the set
{µ(x) : x ∈ X}, denoted by Imµ is called the image of µ and the tip of µ, denoted
by supµ, is defined as

∨
x∈X

µ(x). We say that an L-subset µ of X is contained in

an L-subset ν of X if µ(x) ≤ ν(x) for every x ∈ X and is denoted by µ ⊆ ν. For a
family {µi : i ∈ I} of L-subsets of X, where I is a non empty index set, the union⋃
i∈I

µi and the intersection
⋂
i∈I

µi of {µi : i ∈ I} are, respectively, defined by :⋃
i∈I

µi(x) =
∨
i∈I

µi(x) and
⋂
i∈I

µi(x) =
∧
i∈I

µi(x),

for each x ∈ X. If µ ∈ LX and a ∈ L, then the level subset µa of µ is defined by:

µa = {x ∈ X : µ(x) ≥ a} .

Proposition 2.1. Let η, θ ∈ LX .
(1) If a ≤ b, then ηb ⊆ ηa.
(2) (η ∪ θ)a = ηa ∪ θa, for each a ∈ L, provided L is a chain.
(3) (η ∩ θ)a = ηa ∩ θa, for each a ∈ L.

The set product µ ◦ ν of µ, ν ∈ LS , where S is a groupoid, is an L-subset of S
defined by:

µ ◦ ν(x) =
∨
x=yz

{µ(y) ∧ ν(z)}.

Recall that if x cannot be factored as x = yz in S, then µ ◦ ν(x), being the least
upper bound of the empty set, is zero.

It is well known that the L-power set LX constitutes a completely distributive
lattice under the ordering of L-set inclusion “⊆” for a completely distributive lattice
L. The join ‘∨’ and the meet ‘∧’ of an arbitrary family of L-subsets {µi : i ∈ I}
of X are

⋃
i∈I

µi and
⋂
i∈I

µi, respectively. The least and the greatest elements of the

lattice LX are 0X and 1X , respectively. Here 0X and 1X are L-subsets of X which
3
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map each element of X to 0 and 1, respectively. Moreover, the lattice L can be
isomorphically embedded into the lattice LX .

Throughout this paper G denotes a group with the identity element ‘e’.

Definition 2.2. Let µ ∈ LG. Then µ is called an L-subgroup of G, if
(i) µ(xy) ≥ µ(x) ∧ µ(y),
(ii) µ(x−1) = µ(x), for each x, y ∈ G.

The set of L-subgroups of G is denoted by L(G). Clearly, the tip of an L-subgroup
is attained at the identity element of G.

Theorem 2.3. Let µ ∈ LG with tip a0. Then µ ∈ L(G) if and only if each non
empty level subset µa is a subgroup of G.

Liu and Wu [19, 24] introduced the notion of a fuzzy normal subgroup of a group
during 1981-82.

Definition 2.4. Let µ ∈ L(G). Then µ is called a normal L-subgroup of G if for
all x, y ∈ G, µ(xy) = µ(yx).

The set of normal L-subgroups of G is denoted by NL(G).

Theorem 2.5. Let µ ∈ L(G) . Then µ ∈ NL(G) if and only if each non empty
level subset µa is a normal subgroup of G.

It is well known that the intersection of any arbitrary family of L-subgroups of a
group is an L-subgroup of the given group.

Definition 2.6. Let µ ∈ LG. Then the L-subgroup of G generated by µ is defined
as the smallest L-subgroup of G which contains µ. It is denoted by 〈µ〉, i.e.,

〈µ〉 =
⋂
{ν ∈ L(G) : µ ⊆ ν}.

Further, we recall the definition of a tip extended pair of L-subgroups.

Definition 2.7. Let θ, φ ∈ L(G) and tφ = tθ = θ(e) ∨ φ(e). Define L-subsets θtφ

and φtθ of G as follows:

θtϕ(x) = θ(x) and φtθ (x) = φ(x) for all x 6= e,

and
θtφ(e) = φtθ (e) = θ(e) ∨ φ(e).

Clearly, θ ⊆ θtφ and φ ⊆ φtθ . Also, θtφ , φtθ ∈ L(G) and the pair θtφ , φtθ is known
as the tip-extended pair of L-subgroups θ and φ.

The following result is immediate:

Theorem 2.8. Let θ, φ ∈ L(G) and θ ◦ φ ∈ L(G). Then θtφ ◦ φtθ is an L-subgroup
of G and

θtφ ◦ φtθ = 〈θ ∪ φ〉,
where 〈θ ∪ φ〉 is an L-subgroup of G generated by the union θ ∪ φ. Moreover, if
θ, φ ∈ NL(G), then their tip extended pair θtφ , φtθ ∈ NL(G).

Theorem 2.9. Let θ, φ ∈ NL(G). Then
(1) θ ◦ φ ∈ NL(G),
(2) θtφ ◦ φtθ ∈ NL(G).

4
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Here we recall the following construction of an L-subgroup generated by an L-
subset of G from [13].

Theorem 2.10. Let η ∈ LG. Define the following L-subset η̂ of G by:

η̂(x) =
∨
{a : x ∈ 〈ηa〉 and a ≤ sup η}.

Then, η̂ ∈ L(G) and η̂ = 〈η〉. Moreover, 〈η〉(e) = sup η.

3. Distributivity of the lattice of L-subgroups

The set L(G) of L-subgroups of a group G forms a lattice under the L-set inclusion
where the join and the meet operations for a family {ηi}i∈I of L-subgroups of G are
defined as follows: ∨

i∈I
ηi =

〈⋃
i∈I

ηi

〉
and

∧
i∈I

ηi =
⋂
i∈I

ηi .

Here

〈⋃
i∈I

ηi

〉
is the L-subgroup of G generated by the union of the family {ηi : i ∈

I}. Under these operations the lattice L(G) forms a complete lattice and its subset
NL(G) of normal L-subgroups constitutes a complete modular sublattice.

In classical algebra, a generalized cyclic group can be characterized by the dis-
tributivity of its lattice of subgroups. Here we demonstrate that such groups can
also be characterized in terms of the distributivity of its lattice of L-subgroups.

Definition 3.1 ([15]). A group G is said to be generalized cyclic if for any two
elements a, b ∈ G, there exists an element c ∈ G such that

a = cm and b = cn for some integers m and n.

The group of rational numbers under addition is an example of a generalized cyclic
group which is not cyclic. It is worthwile to mention here that a generalized cyclic
group G is an Abelian group. Moreover for its subgroup lattice L(G), the join and
the meet of H,K ∈ L(G) are defined by :

H ∨K = HK and H ∧K = H ∩K.

The following result is well known and can be found in Birkhoff [15].

Theorem 3.2. A group G is generalized cyclic if and only if its subgroup lattice
L(G) is distributive.

Let us denote by L(G) the lattice of L-subgroups of G. Then we have the follow-
ing:

Theorem 3.3. If a group G is generalized cyclic, then the lattice L(G) is distribu-
tive.

Proof. Suppose that G is a generalized cyclic. Since the distributive inequality holds
in every lattice, it is sufficient to establish that if θ, φ and χ ∈ L(G), then

θ ∧ (φ ∨ χ) ⊆ (θ ∧ φ) ∨ (θ ∧ χ).

In view of Theorem 2.8, we have

φ ∨ χ = φtχ ◦ χtφ
5
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and
(θ ∧ φ) ∨ (θ ∧ χ) = (θ ∧ φ)tθ∧χ ◦ (θ ∧ χ)tθ∧φ .

Thus we shall prove

θ ∧ (φtχ ◦ χtφ) ⊆ (θ ∧ φ)tθ∧χ ◦ (θ ∧ χ)tθ∧φ .

Let x ∈ G and define the following subset of G×G :

D(x) = {(u, v) ∈ G×G : x = uv}.
Now, consider

(θ ∧ (φtχ ◦ χtφ))(x) = θ(x) ∧ (φtχ ◦ χtφ)(x)

= θ(x) ∧

 ∨
(u,v)∈D(x)

(φtχ(u) ∧ χtφ(v))


=

∨
(u,v)∈D(x)

(θ(x) ∧ φtχ(u) ∧ χtφ(v))

(since L is a complete Heyting algebra)

=
∨

(u,v)∈D(x)

au,v,

where au,v = θ(x) ∧ φtχ(u) ∧ χtφ(v) for (u, v) ∈ D(x). Note that x ∈ θau,v and

x = uv ∈ φtχau,vχ
tφ
au,v , which implies

x ∈ θau,v ∩ φtχau,vχ
tφ
au,v .

Since θ, φ and χ ∈ L(G), the tip extended pair φtχ , χtφ ∈ L(G). By Theorem 2.3,

the level subsets θau,v , φ
tχ
au,v and χtφ are subgroups of G. Since G is a generalized

cyclic group, by Theorem 3.2, its subgroup lattice is distributive. Consequently,

θau,v ∩ φtχau,vχ
tφ
au,v = (θau,v ∩ φtχau,v )(θau,v ∩ χ

tφ
au,v ).

Then
x ∈ (θau,v ∩ φtχau,v )(θau,v ∩ χ

tφ
au,v ).

Thus x = yz, where y ∈ θau,v ∩ φ
tχ
au,v and z ∈ θau,v ∩ χ

tφ
au,v . This implies

(θ ∧ φtχ)(y) ≥ au,v and (θ ∧ χtφ)(z) ≥ au,v.
So

au,v ≤
(
θ ∧ φtχ

)
(y) ∧

(
θ ∧ χtφ

)
(z).

Consequently,

(θ ∧ (φtχ ◦ χtφ))(x) =
∨

(u,v)∈D(x)

au,v

≤
∨

(r,s)∈D(x)

{(
θ ∧ φtχ

)
(r) ∧

(
θ ∧ χtφ

)
(s)
}

= (θ ∧ φtχ) ◦ (θ ∧ χtφ)(x).

Hence
(θ ∧ (φtχ ◦ χtφ)) ⊆ (θ ∧ φtχ) ◦ (θ ∧ χtφ).

6
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In view of the definition of a tip extended pair of L-subgroup, the following is easy
to verify:

θ ∧ φtχ = (θ ∧ φ)tθ∧χ and θ ∧ χtφ = (θ ∧ χ)tθ∧φ .

Therefore

θ ∧ (φtχ ◦ χtφ) ⊆ (θ ∧ φ)tθ∧χ ◦ (θ ∧ χ)tθ∧φ .

This completes the proof.

Below, an alternative proof of the above theorem is provided without using the no-
tion of tip extended pair of L-subgroups. However, in this proof the lattice L is a
chain and hence the theorem looses its generality.

Alternative proof of the above theorem.

Let θ, φ and χ ∈ L(G). Then we show that

θ ∧ (φ ∨ χ) ⊆ (θ ∧ φ) ∨ (θ ∧ χ).

Note that the tip of the L-subset φ ∪ χ is φ(e) ∨ χ(e). By Theorem 2.10,

φ ∨ χ(x) =
∨

a≤φ(e)∨χ(e)

{a : x ∈ 〈(φ ∪ χ)a〉}.

Now, consider

θ ∧ (φ ∨ χ)(x) = θ(x) ∧

 ∨
a≤φ(e)∨χ(e)

{a : x ∈ 〈(φ ∪ χ)a〉}


=

∨
a≤φ(e)∨χ(e)

{θ(x) ∧ a : x ∈ 〈φa ∪ χa〉}

(using Proposition 2.1, since L is a chain )

=
∨
c∈S

c,

where S = {θ(x) ∧ a : a ≤ φ(e) ∨ χ(e) and x ∈ 〈φa ∪ χa〉}. Note that the tip of the
L-subset (θ∩φ)∪ (θ∩χ) is θ(e)∧{φ(e)∨χ(e)}. Further, define the following subset
of L:

T = {b : b ≤ θ(e) ∧ (φ(e) ∨ χ(e)) and x ∈ 〈θb ∩ (φb ∪ χb)〉}.
We claim that S ⊆ T . For this, let c ∈ S. Then

c = θ(x) ∧ a where a ≤ φ(e) ∨ χ(e) and x ∈ 〈φa ∪ χa〉.(3.1)

Note that as c ≤ a ≤ φ(e) ∨ χ(e), the level subset (φ ∪ χ)c = φc ∪ χc is non empty.
If either φc or χc is empty, then cleary S ⊆ T . So we assume that φc 6= φ 6= χc.
Hence by Theorem 2.3, φc and χc are subgroups of G. As G is a generalized cyclic
group, 〈φc ∪ χc〉 = φcχc. Also, the subgroup lattice of a generalized cyclic group is
distributive, we have

θc ∩ (φcχc) = (θc ∩ φc)(θc ∩ χc).
7
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At this point, by (3.1), note that x ∈ θc and x ∈ 〈φc ∪ χc〉 = φcχc so that x ∈
θc ∩ (φcχc). This implies x ∈ (θc ∩ φc)(θc ∩ χc). But

(θc ∩ φc)(θc ∩ χc) = 〈(θc ∩ φc) ∪ (θc ∩ χc)〉 = 〈θc ∩ (φc ∪ χc)〉.
Again by (3.1) and the above equation, it follows that S ⊆ T . Now, by Proposition 2.1,
θc ∩ (φc ∪ χc) = (θ ∩ (φ ∪ χ))c so that we have

T = {b : b ≤ θ(e) ∧ (φ(e) ∨ χ(e)) and x ∈ 〈(θ ∩ (φ ∪ χ))b〉}.
Consequently,

θ ∧ (φ ∨ χ)(x) =
∨
c∈S

c ≤
∨
b∈T

b = (θ ∩ φ) ∨ (θ ∩ χ)(x). (By Theorem 2.10)

This proves the lattice of L-subgroup of a generalized cyclic group is distributive. �

In the reverse direction, we have

Theorem 3.4. Let G be a group. Then the subgroup lattice L(G) is distributive if
the lattice L(G) is distributive.

Proof. Let Lc(G) be the set of characteristics functions of the members of L(G).
Then it is easy to verify that Lc(G) is a sublattice of L(G). Moreover, the mapping
Chi from L(G) into L(G) defined by

Chi : A→ 1A, A ∈ L(G),

where 1A is the characteristic function of A, is a lattice monomorphism such that the
image of L(G) under Chi is Lc(G). Now Lc(G) being a sublattice of a distributive
lattice L(G) is a distributive lattice. Consequently the lattice L(G) being isomorphic
to Lc(G) is also distributive. �

Thus in view of Theorems 3.3 and 3.4, we obtain the following:

Theorem 3.5. A group G is generalized cyclic if and only if the lattice L(G) is
distributive.

If L = [0, 1], then as a corollary we obtain the following:

Corollary 3.6. A group G is generalized cyclic if and only if the lattice of fuzzy
subgroups of G is distributive.

4. Modularity

This section deals with the modularity of the lattice of normal L-subgroups.
Notice that a pair of normal L-subgroups θ and φ of G, θ ◦φ is a normal L-subgroup
of G generated by the union θ ∪ φ if and only if θ and φ have the same tips (see
[1]) whereas θtφ ◦φtθ is a normal L-subgroup of G generated by the union θ∪φ (see
Theorem 2.8).

Theorem 4.1. The set NL(G) of normal L-subgroups of G is a lattice under the
ordering of L-set inclusion, where the join ‘∨’ and the meet ‘∧’ in NL(G) are defined
as follows:

θ ∨ φ = θtφ ◦ φtθ , and θ ∧ φ = θ ∩ φ.
8
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Theorem 4.2. The lattice NL(G) of normal L-subgroups of G is modular.

Proof. Since the modular inequality holds in every lattice, it is sufficient to establish
that if θ, φ and χ ∈ NL(G) and θ ⊇ φ, then

θ ∧ (φ ∨ χ) ⊆ φ ∨ (θ ∧ χ).(4.1)

In view of Theorem 2.8, we have

φ ∨ χ = φtχ ◦ χtφ and φ ∨ (θ ∧ χ) = φtθ∧χ ◦ (θ ∧ χ)tφ .

Thus we shall prove
θ ∧ (φtχ ◦ χtφ) ⊆ φtθ∧χ ◦ (θ ∧ χ)tφ .

Let x ∈ G. suppose x = e. Then by using the definition of a tip extended pair of
L-subgroups, we get

θ ∧ (φtχ ◦ χtφ)(e) = θ(e) ∧ {(φ(e) ∨ χ(e)) ∧ (φ(e) ∨ χ(e))}
= θ(e) ∧ (φ(e) ∨ χ(e))

= φ(e) ∨ (θ(e) ∧ χ(e)) (as L is distributive and θ ⊇ φ)

= φ(e) ∨ (θ ∧ χ)(e)

= (φtθ∧χ ◦ (θ ∧ χ)tφ)(e).

Thus (4.1) holds.
Suppose x 6= e. Further, observe the following:
As χtφ(e) = φtχ(e) = φ(e) ∨ χ(e), we have

φtχ(x) ∧ χtφ(e) = φtχ(x) = φ(x)(4.2)

and

φtχ(e) ∧ χtφ(x) = χtφ(x) = χ(x).(4.3)

Also θ ⊇ φ. This implies that

θ(x) ∧ φ(x) = φ(x).(4.4)

Next if x = uv, then as θ is an L-subgroup, we get

θ(x) ∧ θ(u) ≤ θ(u−1x) = θ(v).(4.5)

Since the tip of an L-subgroup is attained at the identity element ′e′, it follows that

(θ ∧ χ)(x) ∨ φ(x) ≤ (θ ∧ χ)(e) ∨ φ(e).

By the definition of a tip-extended pair φtθ∧χ and (θ ∧ χ)tφ , it follows that

φtθ∧χ(e) = (θ ∧ χ)(e) ∨ φ(e) = (θ ∧ χ)tφ(e).(4.6)

Consequently,
φ(x) ∨ (θ ∧ χ)(x) ≤ φtθ∧χ(e) = (θ ∧ χ)tφ(e),

which implies

φ(x) ∨ (θ ∧ χ)(x) = φtθ∧χ(e) ∧ (φ(x) ∨ (θ ∧ χ)(x)) = φtθ∧χ(e) ∧ (φtθ∧χ(x) ∨ (θ ∧ χ)tφ(x)).

(4.7)

Define the following subset of G×G :

D(x) = {(u, v) ∈ G×G : x = uv}.
9
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Then consider the left hand side of the inequality (4.1)

(θ ∧ (φtχ ◦ χtφ))(x) = θ(x) ∧ (φtχ ◦ χtφ)(x)

= θ(x) ∧

 ∨
(u,v)∈D(x)

(φtχ(u) ∧ χtφ(v))


=

∨
(u,v)∈D(x)

(θ(x) ∧ φtχ(u) ∧ χtφ(v))

(since L is a complete Heyting algebra)

=

 ∨
(u,v)∈D(x)
u 6=e,v 6=e

(θ(x) ∧ φtχ(u) ∧ χtφ(v))


∨(

θ(x) ∧ φtχ(x) ∧ χtφ(e)
)∨(

θ(x) ∧ φtχ(e) ∧ χtφ(x)
)

=

 ∨
(u,v)∈D(x)
u6=e,v 6=e

(θ(x) ∧ φ(u) ∧ χ(v))


∨

((θ(x) ∧ φ(x)) ∨ (θ(x) ∧ χ(x))) (by (4.2) and (4.3))

=

 ∨
(u,v)∈D(x)
u6=e,v 6=e

(θ(x) ∧ θ(u) ∧ φ(u) ∧ χ(v))


∨

(φ(x) ∨ (θ(x) ∧ χ(x))) (by (4))

≤

 ∨
(u,v)∈D(x)
u6=e,v 6=e

(θ(v) ∧ φ(u) ∧ χ(v))

∨(φ(x) ∨ (θ ∧ χ(x))) (by (4.5))

=

 ∨
(u,v)∈D(x)
u6=e,v 6=e

{φ(u) ∧ (θ ∧ χ)(v)}


∨

(φtθ∧χ(e) ∧ (φtθ∧χ(x) ∨ (θ ∧ χ)tφ(x))) (by (4.7))

=

 ∨
(u,v)∈D(x)
u6=e,v 6=e

(φtθ∧χ(u) ∧ (θ ∧ χ)tφ(v))


∨

((φtθ∧χ(e) ∧ φtθ∧χ(x)) ∨ (φtθ∧χ(e) ∧ (θ ∧ χ)tφ(x)))

(by the definition of the tip-extended pair φtθ∧χ ,

(θ ∧ χ)tφ and the distributivity of L)

=

 ∨
(u,v)∈D(x)
u6=e,v 6=e

(
φtθ∧χ(u) ∧ (θ ∧ χ)tφ(v)

)
∨

((φtθ∧χ(e) ∧ (θ ∧ χ)tφ(x)) ∨ {φtθ∧χ(x) ∧ (θ ∧ χ)tφ(e)}) (by (4.6))

=
∨

(u,v)∈D(x)

(φtθ∧χ(u) ∧ (θ ∧ χ)tφ(v))

= φtθ∧χ ◦ (θ ∧ χ)tφ(x).
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Thus
θ ∧ (φ ∨ χ) ⊆ φ ∨ (θ ∧ χ).

This establishes the modularity of the lattice NL(G). �

5. An application of subdirect product theorem

In this section, we establish the main results of this paper by an application
of subdirect product theorem proved by T. Head [16] and by a subdirect product
theorm proved in [2].

For any algebra X, T. Head by using convolutional method very conveniently and
elegantly mirrored any n-ary operation of X to its fuzzy power set F (X), power set
P (X), crisp set C(X) and finally to the cartesian product C(X)J where J = [0, 1).
The intricate relationship and interplay of these subsets produced some amazing
results which are formulated in the form of metatheorem and subdirect product
theorems. The purpose of the formulation of these results was to obtain the fuzzy
versions of the corresponding crisp results of algebra. T. Head successfully accom-
plished this task and demonstrated how to extend the results of semigroup to fuzzy
setting by an application of metatheorem. The formulation of metatheorem and sub-
direct product theorem are based on the notions of Rep function and convolutional
extension. T. Head has presented the fuzzy power algebra as a subdirect product of
copies of its associated crisp power algebra. Recall that an algebra A is said to be
a subdirect product of a family of algebras {Ab : b in B}, where B is an arbitrary
index set, if A is isomorphic to a subalgebra of the product algebra {Ab : b in B}
with the property that its projection into each co-ordinate space Ab is a surjection.
Recall that if X is an algebra having the n-ary operations ∗1, . . . , ∗k, n ≥ 1, then
these operations extends to operations on P (X), C(X) and LX by convolutional ex-
tension method. Moreover, as P (X), C(X) and LX have two additional operations
sup and inf, these sets become (∗1, . . . , ∗k, inf, sup)-algebras. Since the function
Rep : LX → C(X)J commutes with ∗1, . . . , ∗k, finite inf and arbitrary sup ; the
function Rep turns out to be an injective homomorphism of the algebra LX into the
product algebra C(X)J . Therefore Rep is an algebraic as well as order theoretic
isomorphism of LX with its image I(X). Here we restate the subdirect product
theorem due to T. Head for the algebra of LX where the lattice L is a complete
chain.

Firstly, we recall the definition of Rep function as given in [16]. Here, the set
F (X) of fuzzy subsets of X has been replaced by the set of L-subset LX of X,
where L is a complete chain.

Definition 5.1. For a non empty set X, let Rep : LX → C(X)J where J = L ∼ {1},
be defined for each µ ∈ LX , for each a ∈ J and x ∈ X, by

Rep(µ)(a)(x) =

{
0 if µ(x) ≤ a,
1 otherwise.

The subdirect product theorem is as follows :

Theorem 5.2. Let X be an algebra having n-ary operations ∗1, . . . , ∗k, for various
values of n ≥ 1. Then Rep:LX → C(X)J is a representation of the (∧,∨, ∗1, . . . , ∗k)-
algebra LX as subdirect product of copies of the (∧,∨, ∗1, . . . , ∗k)-algebra C(X).

11
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T. Head [16] has also established a subdirect product theorem for a restricted
class of fuzzy subgroups namely fuzzy normal subgroups. For this purpose, he had
to demonstrate that the function Rep commutes with the inf of the lattice of fuzzy
normal subgroups of G and also with its sup. The first requirement is satisfied since
the inf of lattice of fuzzy normal subgroups of G coincides with inf of lattice of fuzzy
subsets of G. To show the other commutation, for a pair of fuzzy subgroups η and θ,
T. Head has defined what he calls a tip extended pair of fuzzy subgroups ηtθ and θtη

(see Erratum [17]). Then he asserts that sup{η, θ} = ηtθ ∗ θtη , where the operation
∗ in the lattice of fuzzy normal subgroups of G is the convolutional extension of
the binary operation ∗ of the group G [16] which coincides with the set product ◦
defined by Liu [19]. The function Rep commutes with the sup of lattice of fuzzy
normal subgroups of G follows in view of the fact that the Rep function commutes
with the convolutional extension ∗.

Let Lc(G) denotes the set of characteristic functions of all subgroups of G and
NLc(G) denotes the set of characteristic functions of all normal subgroups of G.
Then it is well known Lc(G) is a sublattice of the lattice L(G) of L-subgroups of
G and NLc(G) is a sublattice of NL(G) the lattice of normal L-subgroups of G.
T. Head has also established a version of subdirect product theorem for the lattice
of fuzzy normal subgroups. We restate this theorem for normal L-subgroups of G
when L is a complete chain. Let NLRep denotes the restriction of the function
Rep : LG → C(G)J to the set NL(G) of normal L-subgroups of G and NLI(G)
denotes the image of NL(G) under the mapping NLRep. Then

Theorem 5.3. Let 〈G,−1 , ∗〉 be a group. Then NLRep : NL(G) → NLc(G)J is
an isomorphism of the lattice NL(G) onto NLI(G) that represents NL(G) as a
subdirect product of the copies of NLc(G) in the lattice NLc(G)J .

Next, we exhibit that Theorem 4.2 can be obtained as a simple corollary to the
above subdirect product theorem. In this result, let us denote the subgroup lattice
of G by L(G) and by Ln(G) the subgroup lattice of normal subgroups of G.

Corollary 5.4. The lattice NL(G) is modular.

Proof. Since the function chi : Ln(G) → NLc(G) is one to one and onto order
preserving mapping which commutes with the convolutional extension of the binary
operation of G to NL(G), chi provides an algebraic as well as order theoretic iso-
morphism between the lattices Ln(G) and NLc(G). Now, since Ln(G) is modular,
NLc(G) is also modular. Then the cartisian product NLc(G)J is also modular.
Now, any sublattice, in particulat NLI(G) of NLc(G)J is also modular. Thus by
subdirect product theorem, the lattice NL(G) is a modular lattice. �

In [2], a new subdirect product theorem for L-subgroups of G has been established
provided L is a complete chain. If LRep denotes the restriction of the function
Rep : LG → C(G)J to the set L(G) of L-subgroups of G and LI(G) denotes the
image of L(G) under the mapping LRep, then we have the following.

Theorem 5.5. Let 〈G,−1 , ∗〉 be a group. Then LRep : L(G) → Lc(G)J is an
isomorphism of the lattice L(G) onto LI(G) that represents L(G) as a subdirect
product of the copies of Lc(G) in the lattice Lc(G)J .
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Below we demonstrate that Theorem 3.3 can be obtained as a simple corollary to
the above subdirect product theorem.

Corollary 5.6. A group G is generalized cyclic if and only if the lattice L(G) is
distributive.

Proof. (⇒): As G is a generalized cyclic group, by Theorem 3.2, the subgroup lattice
L(G) is distributive. Since the function chi : L(G) → Lc(G) provides an algebraic
as well as order theoretic isomorphism between the subgroup lattice L(G) and crisp
L-subgroup lattice Lc(G), it follows that the lattice Lc(G) is a distributive lattice.
Hence the cartisian product Lc(G)J is also distributive. Now, any sublattice, in
particulat LI(G), of Lc(G)J is also distributive. Then by subdirect product theorem,
the lattice L(G) is a distributive lattice.

(⇐): Since the L-subgroup lattice is distributive, its sublattice Lc(G) of crisp L-
subgroups of G is also distributive. As the function chi : L(G)→ Lc(G) provides an
algebraic as well as order theoretic isomorphism, it follows that the subgroup lattice
L(G) is a distributive lattice. Consequently, by Theorem 3.2, G is a generalized
cyclic group. �

We conclude this note with the following conjecture in a completely distributive
lattice.

Conjecture. A lattice polynomial identity P is valid in the subgroup latice L(G)
of a group G if and only if it is valid in the L-subgroup lattice L(G) of G.

The same conjecture can be made for the lattice of ideals of a ring and the
lattice of L-ideals for a completely distributive lattice. These conjectures are already
established and proved in fuzzy setting by T. Head in his important papers [16, 17]
by using metatheorem approach.

6. Conclusion

N. Ajmal and K. V. Thomas studied the modularity of the lattice of fuzzy normal
subgroups in a systematic and stepwise manner. In 1994, they established the lattice
of fuzzy normal subgroups is modular. The notion of strong level subsets was used
very effectively in the development their paper and suggested further application of
this notion in the growth of fuzzy algebraic substructures. In 1995, T. Head defined
Rep function by using this notion and then formulated metatheorem and subdirect
product theorem. Using this subdirect product theorem, T. Head very easily and
conveniently extended the modularity of the lattice of normal subgroups to fuzzy
setting. In fact, results of fuzzy algebra which are extensions of results from classi-
cal algebra become just simple instances of these indigenous results. However, for
lattice valued fuzzy subsets metatheorem and subdirect theorem are not applicable.
Therefore we suggest the researchers pursuing studies in these areas to switch over
to L-setting by investigating properties of L-subalgebras.
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